Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cereb Cortex ; 34(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38610086

RESUMO

Reading skills and developmental dyslexia, characterized by difficulties in developing reading skills, have been associated with brain anomalies within the language network. Genetic factors contribute to developmental dyslexia risk, but the mechanisms by which these genes influence reading skills remain unclear. In this preregistered study (https://osf.io/7sehx), we explored if developmental dyslexia susceptibility genes DNAAF4, DCDC2, NRSN1, and KIAA0319 are associated with brain function in fluently reading adolescents and young adults. Functional MRI and task performance data were collected during tasks involving written and spoken sentence processing, and DNA sequence variants of developmental dyslexia susceptibility genes previously associated with brain structure anomalies were genotyped. The results revealed that variation in DNAAF4, DCDC2, and NRSN1 is associated with brain activity in key language regions: the left inferior frontal gyrus, middle temporal gyrus, and intraparietal sulcus. Furthermore, NRSN1 was associated with task performance, but KIAA0319 did not yield any significant associations. Our findings suggest that individuals with a genetic predisposition to developmental dyslexia may partly employ compensatory neural and behavioral mechanisms to maintain typical task performance. Our study highlights the relevance of these developmental dyslexia susceptibility genes in language-related brain function, even in individuals without developmental dyslexia, providing valuable insights into the genetic factors influencing language processing.


Assuntos
Dislexia , Fenômenos Fisiológicos do Sistema Nervoso , Adolescente , Humanos , Adulto Jovem , Encéfalo/diagnóstico por imagem , Dislexia/diagnóstico por imagem , Dislexia/genética , Genótipo , Proteínas Associadas aos Microtúbulos/genética , Leitura
2.
Elife ; 122024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277211

RESUMO

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than fivefold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here, we sought to define the roles of PAX1 and newly identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); p=7.07E-11, OR = 1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wild-type. By genetic targeting we found that wild-type Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, the latter suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2 or tamoxifen treatment significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a PAX1-COL11a1-MMP3 signaling axis in spinal chondrocytes.


Adolescent idiopathic scoliosis (AIS) is a twisting deformity of the spine that occurs during periods of rapid growth in children worldwide. Children with severe cases of AIS require surgery to stop it from getting worse, presenting a significant financial burden to health systems and families. Although AIS is known to cluster in families, its genetic causes and its inheritance pattern have remained elusive. Additionally, AIS is known to be more prevalent in females, a bias that has not been explained. Advances in techniques to study the genetics underlying diseases have revealed that certain variations that increase the risk of AIS affect cartilage and connective tissue. In humans, one such variation is near a gene called Pax1, and it is female-specific. The extracellular matrix is a network of proteins and other molecules in the space between cells that help connect tissues together, and it is particularly important in cartilage and other connective tissues. One of the main components of the extracellular matrix is collagen. Yu, Kanshour, Ushiki et al. hypothesized that changes in the extracellular matrix could affect the cartilage and connective tissues of the spine, leading to AIS. To show this, the scientists screened over 100,000 individuals and found that AIS is associated with variants in two genes coding for extracellular matrix proteins. One of these variants was found in a gene called Col11a1, which codes for one of the proteins that makes up collagen. To understand the relationship between Pax1 and Col11a1, Yu, Kanshour, Ushiki et al. genetically modified mice so that they would lack the Pax1 gene. In these mice, the activation of Col11a1 was reduced in the mouse spine. They also found that the form of Col11a1 associated with AIS could not suppress the activation of a gene called Mmp3 in mouse cartilage cells as effectively as unmutated Col11a1. Going one step further, the researchers found that lowering the levels of an estrogen receptor altered the activation patterns of Pax1, Col11a1, and Mmp3 in mouse cartilage cells. These findings suggest a possible mechanism for AIS, particularly in females. The findings of Yu, Kanshour, Ushiki et al. highlight that cartilage cells in the spine are particularly relevant in AIS. The results also point to specific molecules within the extracellular matrix as important for maintaining proper alignment in the spine when children are growing rapidly. This information may guide future therapies aimed at maintaining healthy spinal cells in adolescent children, particularly girls.


Assuntos
Escoliose , Masculino , Animais , Criança , Camundongos , Humanos , Feminino , Adolescente , Escoliose/genética , Metaloproteinase 3 da Matriz/genética , Coluna Vertebral , Fatores de Transcrição/genética , Colágeno/genética , Variação Genética , Colágeno Tipo XI/genética
3.
Am J Hum Biol ; 36(2): e23983, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37715654

RESUMO

BACKGROUND: The current knowledge about the molecular mechanisms underlying the health benefits of exercise is still limited, especially in childhood. We set out to investigate the effects of a 20-week exercise intervention on whole-blood transcriptome profile (RNA-seq) in children with overweight/obesity. METHODS: Twenty-four children (10.21 ± 1.33 years, 46% girls) with overweight/obesity, were randomized to either a 20-week exercise program (intervention group; n = 10), or to a no-exercise control group (n = 14). Whole-blood transcriptome profile was analyzed using RNA-seq by STRT technique with GlobinLock technology. RESULTS: Following the 20-week exercise intervention program, 161 genes were differentially expressed between the exercise and the control groups among boys, and 121 genes among girls (p-value <0.05), while after multiple correction, no significant difference between exercise and control groups persisted in gene expression profiles (FDR >0.05). Genes enriched in GO processes and molecular pathways showed different immune response in boys (antigen processing and presentation, infections, and T cell receptor complex) and in girls (Fc epsilon RI signaling pathway) (FDR <0.05). CONCLUSION: These results suggest that 20-week exercise intervention program alters the molecular pathways involved in immune processes in children with overweight/obesity.


Assuntos
Sobrepeso , Transcriptoma , Masculino , Criança , Feminino , Humanos , Sobrepeso/genética , Sobrepeso/terapia , Obesidade/genética , Exercício Físico/fisiologia
4.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292598

RESUMO

Adolescent idiopathic scoliosis (AIS) is a common and progressive spinal deformity in children that exhibits striking sexual dimorphism, with girls at more than five-fold greater risk of severe disease compared to boys. Despite its medical impact, the molecular mechanisms that drive AIS are largely unknown. We previously defined a female-specific AIS genetic risk locus in an enhancer near the PAX1 gene. Here we sought to define the roles of PAX1 and newly-identified AIS-associated genes in the developmental mechanism of AIS. In a genetic study of 10,519 individuals with AIS and 93,238 unaffected controls, significant association was identified with a variant in COL11A1 encoding collagen (α1) XI (rs3753841; NM_080629.2_c.4004C>T; p.(Pro1335Leu); P=7.07e-11, OR=1.118). Using CRISPR mutagenesis we generated Pax1 knockout mice (Pax1-/-). In postnatal spines we found that PAX1 and collagen (α1) XI protein both localize within the intervertebral disc (IVD)-vertebral junction region encompassing the growth plate, with less collagen (α1) XI detected in Pax1-/- spines compared to wildtype. By genetic targeting we found that wildtype Col11a1 expression in costal chondrocytes suppresses expression of Pax1 and of Mmp3, encoding the matrix metalloproteinase 3 enzyme implicated in matrix remodeling. However, this suppression was abrogated in the presence of the AIS-associated COL11A1P1335L mutant. Further, we found that either knockdown of the estrogen receptor gene Esr2, or tamoxifen treatment, significantly altered Col11a1 and Mmp3 expression in chondrocytes. We propose a new molecular model of AIS pathogenesis wherein genetic variation and estrogen signaling increase disease susceptibility by altering a Pax1-Col11a1-Mmp3 signaling axis in spinal chondrocytes.

5.
J Leukoc Biol ; 114(3): 250-265, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224571

RESUMO

Inorganic polyphosphates are evolutionarily conserved bioactive phosphate polymers found as various chain lengths in all living organisms. In mammals, polyphosphates play a vital role in the regulation of cellular metabolism, coagulation, and inflammation. Long-chain polyphosphates are found along with endotoxins in pathogenic gram-negative bacteria and can participate in bacterial virulence. We aimed to investigate whether exogenously administered polyphosphates modulate human leukocyte function in vitro by treating the cells with 3 different chain lengths of polyphosphates (P14, P100, and P700). The long-chain polyphosphates, P700, had a remarkable capacity to downregulate type I interferon signaling dose dependently in THP1-Dual cells while only a slight elevation could be observed in the NF-κB pathway with the highest dose of P700. P700 treatment decreased lipopolysaccharide-induced IFNß transcription and secretion, reduced STAT1 phosphorylation, and downregulated subsequent interferon-stimulated gene expression in primary human peripheral blood mononuclear cells. P700 also augmented lipopolysaccharide-induced secretion of IL-1α, IL-1ß, IL-4, IL-5, IL-10, and IFNγ. Furthermore, P700 has previously been reported to increase the phosphorylation of several intracellular signaling mediators, such as AKT, mTOR, ERK, p38, GSK3α/ß, HSP27, and JNK pathway components, which was supported by our findings. Taken together, these observations demonstrate the extensive modulatory effects P700 has on cytokine signaling and the inhibitory effects specifically targeted to type I interferon signaling in human leukocytes.


Assuntos
Interferon Tipo I , Lipopolissacarídeos , Animais , Humanos , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , Polifosfatos/farmacologia , Polifosfatos/metabolismo , NF-kappa B/metabolismo , Expressão Gênica , Citocinas/metabolismo , Interferon Tipo I/metabolismo , Mamíferos/genética
6.
Hum Reprod Open ; 2022(4): hoac043, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339249

RESUMO

STUDY QUESTION: Which genes regulate receptivity in the epithelial and stromal cellular compartments of the human endometrium, and which molecules are interacting in the implantation process between the blastocyst and the endometrial cells? SUMMARY ANSWER: A set of receptivity-specific genes in the endometrial epithelial and stromal cells was identified, and the role of galectins (LGALS1 and LGALS3), integrin ß1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in embryo-endometrium dialogue among many other protein-protein interactions were highlighted. WHAT IS KNOWN ALREADY: The molecular dialogue taking place between the human embryo and the endometrium is poorly understood due to ethical and technical reasons, leaving human embryo implantation mostly uncharted. STUDY DESIGN SIZE DURATION: Paired pre-receptive and receptive phase endometrial tissue samples from 16 healthy women were used for RNA sequencing. Trophectoderm RNA sequences were from blastocysts. PARTICIPANTS/MATERIALS SETTING METHODS: Cell-type-specific RNA-seq analysis of freshly isolated endometrial epithelial and stromal cells using fluorescence-activated cell sorting (FACS) from 16 paired pre-receptive and receptive tissue samples was performed. Endometrial transcriptome data were further combined in silico with trophectodermal gene expression data from 466 single cells originating from 17 blastocysts to characterize the first steps of embryo implantation. We constructed a protein-protein interaction network between endometrial epithelial and embryonal trophectodermal cells, and between endometrial stromal and trophectodermal cells, thereby focusing on the very first phases of embryo implantation, and highlighting the molecules likely to be involved in the embryo apposition, attachment and invasion. MAIN RESULTS AND THE ROLE OF CHANCE: In total, 499 epithelial and 581 stromal genes were up-regulated in the receptive phase endometria when compared to pre-receptive samples. The constructed protein-protein interactions identified a complex network of 558 prioritized protein-protein interactions between trophectodermal, epithelial and stromal cells, which were grouped into clusters based on the function of the involved molecules. The role of galectins (LGALS1 and LGALS3), integrin ß1 (ITGB1), basigin (BSG) and osteopontin (SPP1) in the embryo implantation process were highlighted. LARGE SCALE DATA: RNA-seq data are available at www.ncbi.nlm.nih.gov/geo under accession number GSE97929. LIMITATIONS REASONS FOR CAUTION: Providing a static snap-shot of a dynamic process and the nature of prediction analysis is limited to the known interactions available in databases. Furthermore, the cell sorting technique used separated enriched epithelial cells and stromal cells but did not separate luminal from glandular epithelium. Also, the use of biopsies taken from non-pregnant women and using spare IVF embryos (due to ethical considerations) might miss some of the critical interactions characteristic of natural conception only. WIDER IMPLICATIONS OF THE FINDINGS: The findings of our study provide new insights into the molecular embryo-endometrium interplay in the first steps of implantation process in humans. Knowledge about the endometrial cell-type-specific molecules that coordinate successful implantation is vital for understanding human reproduction and the underlying causes of implantation failure and infertility. Our study results provide a useful resource for future reproductive research, allowing the exploration of unknown mechanisms of implantation. We envision that those studies will help to improve the understanding of the complex embryo implantation process, and hopefully generate new prognostic and diagnostic biomarkers and therapeutic approaches to target both infertility and fertility, in the form of new contraceptives. STUDY FUNDING/COMPETING INTERESTS: This research was funded by the Estonian Research Council (grant PRG1076); Horizon 2020 innovation grant (ERIN, grant no. EU952516); Enterprise Estonia (grant EU48695); the EU-FP7 Marie Curie Industry-Academia Partnerships and Pathways (IAPP, grant SARM, EU324509); Spanish Ministry of Economy, Industry and Competitiveness (MINECO) and European Regional Development Fund (FEDER) (grants RYC-2016-21199, ENDORE SAF2017-87526-R, and Endo-Map PID2021-127280OB-100); Programa Operativo FEDER Andalucía (B-CTS-500-UGR18; A-CTS-614-UGR20), Junta de Andalucía (PAIDI P20_00158); Margarita Salas program for the Requalification of the Spanish University system (UJAR01MS); the Knut and Alice Wallenberg Foundation (KAW 2015.0096); Swedish Research Council (2012-2844); and Sigrid Jusélius Foundation; Academy of Finland. A.S.-L. is funded by the Spanish Ministry of Science, Innovation and Universities (PRE2018-085440). K.G.-D. has received consulting fees and/or honoraria from RemovAid AS, Norway Bayer, MSD, Gedeon Richter, Mithra, Exeltis, MedinCell, Natural cycles, Exelgyn, Vifor, Organon, Campus Pharma and HRA-Pharma and NIH support to the institution; D.B. is an employee of IGENOMIX. The rest of the authors declare no conflict of interest.

7.
EFORT Open Rev ; 7(6): 414-421, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35638601

RESUMO

Purpose: Idiopathic scoliosis is the most common spinal deformity and affects 1-3% of children and adolescents. Idiopathic scoliosis may run in families and the purpose of this systematic review was to describe the degree of heritability. Methods: We searched Medline, Web of Science and EMBASE for family and twin studies reporting heritability estimates for idiopathic scoliosis, or studies from which heritability estimates could be calculated. Reference lists were screened for additional papers. We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The protocol was registered at PROSPERO (registration number: CRD42022307329). Results: The literature search identified 1134 reports. After full-text screening, nine eligible reports were included for data extraction. Seven were twin studies containing between 5 and 526 pairs, and two were family studies with 1149 and 2732 individuals, respectively. Quality was 'good' in four studies and 'fair' in five studies. In general, studies with radiograph-confirmed diagnosis reported higher heritability estimates than studies with self-reported diagnosis. Population-based twin studies reported lower heritability estimates than clinic-based twin studies. Family-based studies reported higher heritability estimates than twin studies. Pairwise concordance for scoliosis ranged from 0.11 to 1.00 in monozygotic twins and from 0 to 1.0 in dizygotic twins. A meta-analysis of three studies resulted in a narrow sense heritability estimate of 0.57 (95% CI: 0.29-0.86). Conclusion: Twin and family studies indicate a hereditary component in idiopathic scoliosis, but study heterogeneity is large, and the degree of the heritability is uncertain. Nevertheless, known genetic variants associated with idiopathic scoliosis can still only explain a minor part of heritability.

8.
Pediatr Diabetes ; 23(6): 703-713, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35419920

RESUMO

OBJECTIVE: The pathogenesis of type 1 diabetes (T1D) is associated with genetic predisposition and immunological changes during presymptomatic disease. Differences in immune cell subset numbers and phenotypes between T1D patients and healthy controls have been described; however, the role and function of these changes in the pathogenesis is still unclear. Here we aimed to analyze the transcriptomic landscapes of peripheral blood mononuclear cells (PBMCs) during presymptomatic disease. METHODS: Transcriptomic differences in PBMCs were compared between cases positive for islet autoantibodies and autoantibody negative controls (9 case-control pairs) and further in monocytes and lymphocytes separately in autoantibody positive subjects and control subjects (25 case-control pairs). RESULTS: No significant differential expression was found in either data set. However, when gene set enrichment analysis was performed, the gene sets "defence response to virus" (FDR <0.001, ranking 2), "response to virus" (FDR <0.001, ranking 3) and "response to type I interferon" (FDR = 0.002, ranking 12) were enriched in the upregulated genes among PBMCs in cases. Upon further analysis, this was also seen in monocytes in cases (FDR = 0.01, ranking 2; FDR = 0.04, ranking 3 and FDR = 0.02, ranking 1, respectively) but not in lymphocytes. CONCLUSION: Gene set enrichment analysis of children with T1D-associated autoimmunity revealed changes in pathways relevant for virus infection in PBMCs, particularly in monocytes. Virus infections have been repeatedly implicated in the pathogenesis of T1D. These results support the viral hypothesis by suggesting altered immune activation of viral immune pathways in monocytes during diabetes.


Assuntos
Diabetes Mellitus Tipo 1 , Viroses , Doenças Assintomáticas , Autoanticorpos , Autoimunidade/genética , Humanos , Leucócitos Mononucleares , Monócitos/metabolismo , Regulação para Cima , Viroses/metabolismo
9.
J Mol Med (Berl) ; 99(11): 1571-1583, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34322716

RESUMO

Otitis media (OM) is common in young children and can cause hearing loss and speech, language, and developmental delays. OM has high heritability; however, little is known about OM-related molecular and genetic processes. CDHR3 was previously identified as a locus for OM susceptibility, but to date, studies have focused on how the CDHR3 p.Cys529Tyr variant increases epithelial binding of rhinovirus-C and risk for lung or sinus pathology. In order to further delineate a role for CDHR3 in OM, we performed the following: exome sequencing using DNA samples from OM-affected individuals from 257 multi-ethnic families; Sanger sequencing, logistic regression and transmission disequilibrium tests for 407 US trios or probands with OM; 16S rRNA sequencing and analysis for middle ear and nasopharyngeal samples; and single-cell RNA sequencing and differential expression analyses for mouse middle ear. From exome sequence data, we identified a novel pathogenic CDHR3 splice variant that co-segregates with OM in US and Finnish families. Additionally, a frameshift and six missense rare or low-frequency variants were identified in Finnish probands. In US probands, the CDHR3 p.Cys529Tyr variant was associated with the absence of middle ear fluid at surgery and also with increased relative abundance of Lysobacter in the nasopharynx and Streptomyces in the middle ear. Consistent with published data on airway epithelial cells and our RNA-sequence data from human middle ear tissues, Cdhr3 expression is restricted to ciliated epithelial cells of the middle ear and is downregulated after acute OM. Overall, these findings suggest a critical role for CDHR3 in OM susceptibility. KEY MESSAGES: • Novel rare or low-frequency CDHR3 variants putatively confer risk for otitis media. • Pathogenic variant CDHR3 c.1653 + 3G > A was found in nine families with otitis media. • CDHR3 p.Cys529Tyr was associated with lack of effusion and bacterial otopathogens. • Cdhr3 expression was limited to ciliated epithelial cells in mouse middle ear. • Cdhr3 was downregulated 3 h after infection of mouse middle ear.


Assuntos
Proteínas Relacionadas a Caderinas/genética , Proteínas de Membrana/genética , Otite Média/genética , Animais , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Microbiota/genética , Mutação , Otite Média/microbiologia , RNA Ribossômico 16S , Transcriptoma
10.
ERJ Open Res ; 7(2)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33898616

RESUMO

BACKGROUND: The clinical presentation of children sensitised to dog dander varies from asymptomatic to severe allergic airway disease, but the genetic mechanisms underlying these differences are not clear. The objective of the present study was to investigate nasal transcriptomic profiles associated with dog dander sensitisation in school children and to reveal clinical symptoms related with these profiles. METHODS: RNA was extracted from nasal epithelial cell brushings of children sensitised to dog dander and healthy controls. Blood sample analyses included IgE against dog dander, dog allergen molecules, other airborne and food allergens, basophil activation and white blood cell counts. Clinical history of asthma and rhinitis was recorded, and lung function was assessed (spirometry, methacholine provocation and exhaled nitric oxide fraction). RESULTS: The most overexpressed gene in children sensitised to dog dander compared to healthy controls was CST1, coding for Cystatin 1. A cluster of these children with enhanced CST1 expression showed lower forced expiratory volume in 1 s, increased bronchial hyperreactivity, pronounced eosinophilia and higher basophil allergen threshold sensitivity compared with other children sensitised to dog dander. In addition, multi-sensitisation to lipocalins was more common in this group. CONCLUSIONS: Overexpression of CST1 is associated with more severe allergic airway disease in children sensitised to dog dander. CST1 is thus a possible biomarker of the severity of allergic airway disease and a possible therapeutic target for the future treatment of airborne allergy.

11.
J Med Genet ; 58(7): 442-452, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32709676

RESUMO

BACKGROUND: Otitis media (OM) susceptibility has significant heritability; however, the role of rare variants in OM is mostly unknown. Our goal is to identify novel rare variants that confer OM susceptibility. METHODS: We performed exome and Sanger sequencing of >1000 DNA samples from 551 multiethnic families with OM and unrelated individuals, RNA-sequencing and microbiome sequencing and analyses of swabs from the outer ear, middle ear, nasopharynx and oral cavity. We also examined protein localisation and gene expression in infected and healthy middle ear tissues. RESULTS: A large, intermarried pedigree that includes 81 OM-affected and 53 unaffected individuals cosegregates two known rare A2ML1 variants, a common FUT2 variant and a rare, novel pathogenic variant c.1682A>G (p.Glu561Gly) within SPINK5 (LOD=4.09). Carriage of the SPINK5 missense variant resulted in increased relative abundance of Microbacteriaceae in the middle ear, along with occurrence of Microbacteriaceae in the outer ear and oral cavity but not the nasopharynx. Eight additional novel SPINK5 variants were identified in 12 families and individuals with OM. A role for SPINK5 in OM susceptibility is further supported by lower RNA counts in variant carriers, strong SPINK5 localisation in outer ear skin, faint localisation to middle ear mucosa and eardrum and increased SPINK5 expression in human cholesteatoma. CONCLUSION: SPINK5 variants confer susceptibility to non-syndromic OM. These variants potentially contribute to middle ear pathology through breakdown of mucosal and epithelial barriers, immunodeficiency such as poor vaccination response, alteration of head and neck microbiota and facilitation of entry of opportunistic pathogens into the middle ear.


Assuntos
Microbiota , Otite Média/genética , Otite Média/microbiologia , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Adulto , Animais , Bactérias/classificação , Bactérias/genética , Criança , Suscetibilidade a Doenças/microbiologia , Orelha Externa/microbiologia , Orelha Média/microbiologia , Exoma , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Boca/microbiologia , Nasofaringe/microbiologia , Linhagem , Análise de Sequência de DNA , Análise de Sequência de RNA
12.
Pediatr Res ; 89(7): 1687-1694, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33230195

RESUMO

BACKGROUND: Youth populations with overweight/obesity (OW/OB) exhibit heterogeneity in cardiometabolic health phenotypes. The underlying mechanisms for those differences are still unclear. This study aimed to analyze the whole-blood transcriptome profile (RNA-seq) of children with metabolic healthy overweight/obesity (MHO) and metabolic unhealthy overweight/obesity (MUO) phenotypes. METHODS: Twenty-seven children with OW/OB (10.1 ± 1.3 years, 59% boys) from the ActiveBrains project were included. MHO was defined as having none of the following criteria for metabolic syndrome: elevated fasting glucose, high serum triglycerides, low high-density lipoprotein-cholesterol, and high systolic or diastolic blood pressure, while MUO was defined as presenting one or more of these criteria. Inflammatory markers were additionally determined. Total blood RNA was analyzed by 5'-end RNA-sequencing. RESULTS: Whole-blood transcriptome analysis revealed a distinct pattern of gene expression in children with MHO compared to MUO children. Thirty-two genes differentially expressed were linked to metabolism, mitochondrial, and immune functions. CONCLUSIONS: The identified gene expression patterns related to metabolism, mitochondrial, and immune functions contribute to a better understanding of why a subset of the population remains metabolically healthy despite having overweight/obesity. IMPACT: A distinct pattern of whole-blood transcriptome profile (RNA-seq) was identified in children with metabolic healthy overweight/obesity (MHO) compared to metabolic unhealthy overweight/obesity (MUO) phenotype. The most relevant genes in understanding the molecular basis underlying the MHO/MUO phenotypes in children could be: RREB1, FAM83E, SLC44A1, NRG1, TMC5, CYP3A5, TRIM11, and ADAMTSL2. The identified whole-blood transcriptome profile related to metabolism, mitochondrial, and immune functions contribute to a better understanding of why a subset of the population remains metabolically healthy despite having overweight/obesity.


Assuntos
Perfilação da Expressão Gênica , Obesidade Metabolicamente Benigna/genética , Sobrepeso/genética , Obesidade Pediátrica/genética , Biomarcadores , Pressão Sanguínea , Índice de Massa Corporal , Criança , Feminino , Humanos , Masculino , Síndrome Metabólica/epidemiologia , Obesidade Metabolicamente Benigna/sangue , Sobrepeso/sangue , Obesidade Pediátrica/sangue , Circunferência da Cintura
13.
Sci Rep ; 10(1): 15035, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32929111

RESUMO

Otitis media (OM), a very common disease in young children, can result in hearing loss. In order to potentially replicate previously reported associations between OM and PLG, exome and Sanger sequencing, RNA-sequencing of saliva and middle ear samples, 16S rRNA sequencing, molecular modeling, and statistical analyses including transmission disequilibrium tests (TDT) were performed in a multi-ethnic cohort of 718 families and simplex cases with OM. We identified four rare PLG variants c.112A > G (p.Lys38Glu), c.782G > A (p.Arg261His), c.1481C > T (p.Ala494Val) and c.2045 T > A (p.Ile682Asn), and one common variant c.1414G > A (p.Asp472Asn). However TDT analyses for these PLG variants did not demonstrate association with OM in 314 families. Additionally PLG expression is very low or absent in normal or diseased middle ear in mouse and human, and salivary expression and microbial α-diversity were non-significant in c.1414G > A (p.Asp472Asn) carriers. Based on molecular modeling, the novel rare variants particularly c.782G > A (p.Arg261His) and c.2045 T > A (p.Ile682Asn) were predicted to affect protein structure. Exploration of other potential disease mechanisms will help elucidate how PLG contributes to OM susceptibility in humans. Our results underline the importance of following up findings from genome-wide association through replication studies, preferably using multi-omic datasets.


Assuntos
Mutação de Sentido Incorreto , Otite Média/genética , Plasminogênio/genética , Animais , Orelha Média/metabolismo , Orelha Média/microbiologia , Feminino , Genômica/métodos , Humanos , Masculino , Camundongos , Microbiota , Otite Média/microbiologia , Otite Média/patologia , Linhagem , Plasminogênio/metabolismo , Polimorfismo de Nucleotídeo Único , Saliva/metabolismo
14.
BMC Med Genet ; 21(1): 87, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32357925

RESUMO

BACKGROUND: Developmental dyslexia (DD) is a neurodevelopmental learning disorder with high heritability. A number of candidate susceptibility genes have been identified, some of which are linked to the function of the cilium, an organelle regulating left-right asymmetry development in the embryo. Furthermore, it has been suggested that disrupted left-right asymmetry of the brain may play a role in neurodevelopmental disorders such as DD. However, it is unknown whether there is a common genetic cause to DD and laterality defects or ciliopathies. CASE PRESENTATION: Here, we studied two individuals with co-occurring situs inversus (SI) and DD using whole genome sequencing to identify genetic variants of importance for DD and SI. Individual 1 had primary ciliary dyskinesia (PCD), a rare, autosomal recessive disorder with oto-sino-pulmonary phenotype and SI. We identified two rare nonsynonymous variants in the dynein axonemal heavy chain 5 gene (DNAH5): a previously reported variant c.7502G > C; p.(R2501P), and a novel variant c.12043 T > G; p.(Y4015D). Both variants are predicted to be damaging. Ultrastructural analysis of the cilia revealed a lack of outer dynein arms and normal inner dynein arms. MRI of the brain revealed no significant abnormalities. Individual 2 had non-syndromic SI and DD. In individual 2, one rare variant (c.9110A > G;p.(H3037R)) in the dynein axonemal heavy chain 11 gene (DNAH11), coding for another component of the outer dynein arm, was identified. CONCLUSIONS: We identified the likely genetic cause of SI and PCD in one individual, and a possibly significant heterozygosity in the other, both involving dynein genes. Given the present evidence, it is unclear if the identified variants also predispose to DD and further studies into the association between laterality, ciliopathies and DD are needed.


Assuntos
Dineínas do Axonema/genética , Dislexia/genética , Situs Inversus/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Transtornos da Motilidade Ciliar/genética , Transtornos da Motilidade Ciliar/patologia , Dineínas/genética , Dislexia/diagnóstico por imagem , Dislexia/patologia , Feminino , Predisposição Genética para Doença , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Situs Inversus/diagnóstico por imagem , Situs Inversus/patologia
17.
Eur Respir J ; 55(1)2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31619476

RESUMO

BACKGROUND: Airway obstruction and wheezing in preschool children with recurrent viral infections are a major clinical problem, and are recognised as a risk factor for the development of chronic asthma. We aimed to analyse whether gene expression profiling provides evidence for pathways that delineate distinct groups of children with wheeze, and in combination with clinical information could contribute to diagnosis and prognosis of disease development. METHODS: We analysed leukocyte transcriptomes from preschool children (6 months-3 years) at acute wheeze (n=107), and at a revisit 2-3 months later, comparing them to age-matched healthy controls (n=66). RNA-sequencing applying GlobinLock was used. The cases were followed clinically until age 7 years. Differential expression tests, weighted correlation network analysis and logistic regression were applied and correlations to 76 clinical traits evaluated. FINDINGS: Significant enrichment of genes involved in the innate immune responses was observed in children with wheeze. We identified a unique acute wheeze-specific gene-module, which was associated with vitamin D levels (p<0.005) in infancy, and asthma medication and FEV1%/FVC (forced expiratory volume in 1 s/forced vital capacity) ratio several years later, at age 7 years (p<0.005). A model that predicts leukotriene receptor antagonist medication at 7 years of age with high accuracy was developed (area under the curve 0.815, 95% CI 0.668-0.962). INTERPRETATION: Gene expression profiles in blood from preschool wheezers predict asthma symptoms at school age, and therefore serve as biomarkers. The acute wheeze-specific gene module suggests that molecular phenotyping in combination with clinical information already at an early episode of wheeze may help to distinguish children who will outgrow their wheeze from those who will develop chronic asthma.


Assuntos
Asma , Sons Respiratórios , Asma/tratamento farmacológico , Asma/genética , Criança , Pré-Escolar , Volume Expiratório Forçado , Redes Reguladoras de Genes , Humanos , Vitamina D
18.
Front Immunol ; 10: 2770, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31866997

RESUMO

Upon binding to pathogen or self-derived cytosolic nucleic acids cyclic GMP-AMP synthase (cGAS) triggers the production of cGAMP that further activates transmembrane protein STING. Upon activation STING translocates from ER via Golgi to vesicles. Monogenic STING gain-of-function mutations cause early-onset type I interferonopathy, with disease presentation ranging from fatal vasculopathy to mild chilblain lupus. Molecular mechanisms underlying the variable phenotype-genotype correlation are presently unclear. Here, we report a novel gain-of-function G207E STING mutation causing a distinct phenotype with alopecia, photosensitivity, thyroid dysfunction, and features of STING-associated vasculopathy with onset in infancy (SAVI), such as livedo reticularis, skin vasculitis, nasal septum perforation, facial erythema, and bacterial infections. Polymorphism in TMEM173 and IFIH1 showed variable penetrance in the affected family, implying contribution to varying phenotype spectrum. The G207E mutation constitutively activates inflammation-related pathways in vitro, and causes aberrant interferon signature and inflammasome activation in patient PBMCs. Treatment with Janus kinase 1 and 2 (JAK1/2) inhibitor baricitinib was beneficiary for a vasculitic ulcer, induced hair regrowth and improved overall well-being in one patient. Protein-protein interactions propose impaired cellular trafficking of G207E mutant. These findings reveal the molecular landscape of STING and propose common polymorphisms in TMEM173 and IFIH1 as likely modifiers of the phenotype.


Assuntos
Alelos , Estudos de Associação Genética , Predisposição Genética para Doença , Helicase IFIH1 Induzida por Interferon/genética , Proteínas de Membrana/genética , Mutação , Estudos de Casos e Controles , Consanguinidade , Feminino , Perfilação da Expressão Gênica , Ligação Genética , Humanos , Masculino , Linhagem , Transcriptoma , Sequenciamento Completo do Genoma
19.
Genet Test Mol Biomarkers ; 23(11): 823-827, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31693456

RESUMO

Aim: To determine if there is an association between ABO variants or blood types and otitis media. Methods: DNA samples from 214 probands from Finnish families with recurrent acute (RAOM) and/or chronic otitis media with effusion (COME) were submitted for exome sequencing. Fisher exact tests were performed when (a) comparing frequencies of ABO genotypes in the Finnish probands with otitis media vs. counts in gnomAD Finnish, and (b) within the Finnish family cohort, comparing occurrence of RAOM vs. COME according to ABO genotype/haplotype and predicted blood type. Results: Female sex is protective against having both RAOM and COME. The wildtype genotype for the ABO c.260insG (p.Val87_Thr88fs*) variant resulting in blood type O was protective against RAOM. On the other hand, type A was associated with increased risk for COME. These findings remained significant after adjustment for age and sex. Conclusions: Within the Finnish family cohort, the wildtype genotype for the ABO c.260insG (p.Val87_Thr88fs*) variant and type O are protective against RAOM while type A increases risk for COME. This suggests that the association between the ABO locus and otitis media is specific to blood type, otitis media type and cohort.


Assuntos
Sistema ABO de Grupos Sanguíneos/genética , Otite Média com Derrame/sangue , Otite Média com Derrame/genética , Sistema ABO de Grupos Sanguíneos/metabolismo , Doença Aguda , Adolescente , Criança , Estudos de Coortes , Feminino , Finlândia , Genótipo , Haplótipos/genética , Humanos , Masculino , Otite Média/sangue , Otite Média/genética , Otite Média/metabolismo , Otite Média com Derrame/metabolismo , Recidiva , Sequenciamento do Exoma/métodos
20.
Sci Rep ; 9(1): 13758, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551465

RESUMO

RMRP was the first non-coding nuclear RNA gene implicated in a disease. Its mutations cause cartilage-hair hypoplasia (CHH), an autosomal recessive skeletal dysplasia with growth failure, immunodeficiency, and a high risk for malignancies. This study aimed to gain further insight into the role of RNA Component of Mitochondrial RNA Processing Endoribonuclease (RMRP) in cellular physiology and disease pathogenesis. We combined transcriptome analysis with single-cell analysis using fibroblasts from CHH patients and healthy controls. To directly assess cell cycle progression, we followed CHH fibroblasts by pulse-labeling and time-lapse microscopy. Transcriptome analysis identified 35 significantly upregulated and 130 downregulated genes in CHH fibroblasts. The downregulated genes were significantly connected to the cell cycle. Multiple other pathways, involving regulation of apoptosis, bone and cartilage formation, and lymphocyte function, were also affected, as well as PI3K-Akt signaling. Cell-cycle studies indicated that the CHH cells were delayed specifically in the passage from G2 phase to mitosis. Our findings expand the mechanistic understanding of CHH, indicate possible pathways for therapeutic intervention and add to the limited understanding of the functions of RMRP.


Assuntos
Fase G2/genética , RNA Longo não Codificante/genética , Adulto , Apoptose/genética , Regulação para Baixo/genética , Endorribonucleases/genética , Fibroblastos/fisiologia , Cabelo/anormalidades , Doença de Hirschsprung/genética , Humanos , Síndromes de Imunodeficiência/genética , Linfócitos/fisiologia , Osteocondrodisplasias/congênito , Osteocondrodisplasias/genética , Fosfatidilinositol 3-Quinases/genética , Doenças da Imunodeficiência Primária/genética , Transdução de Sinais/genética , Transcriptoma/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...